Solar Activity Detection and Prediction Using Image Processing and Machine Learning Techniques
نویسنده
چکیده
SOLAR ACTIVITY DETECTION AND PREDICTION USING IMAGE PROCESSING AND MACHINE LEARNING TECHNIQUES by Gang Fu The objective of the research in this dissertation is to develop the methods for automatic detection and prediction of solar activities, including prominence eruptions, emerging flux regions and solar flares. Image processing and machine learning techniques are applied in this study. These methods can be used for automatic observation of solar activities and prediction of space weather that may have great influence on the near earth environment. The research presented in this dissertation covers the following topics: i) automatic detection of prominence eruptions (PEs), ii) automatic detection of emerging flux regions (EFRs), and iii) automatic prediction of solar flares. In detection of prominence eruptions, an automated method is developed by combining image processing and pattern recognition techniques. Consecutive Hα solar images are used as the input. The image processing techniques, including image transformation, segmentation and morphological operations are used to extract the limb objects and measure the associated properties. The pattern recognition techniques, such as Support Vector Machine (SVM), are applied to classify all the objects and generate a list of identified the PEs as the output. In detection of emerging flux regions, an automatic detection method is developed by using multi-scale circular harmonic filters, Kalman filter and SVM. The method takes a sequence of consecutive Michelson Doppler Imager (MDI) magnetograms as the input. The multi-scale circular harmonic filters are applied to detect bipolar regions from the solar disk surface and these regions are traced by Kalman filter until their disappearance. Finally, a SVM classifier is applied to distinguish EFRs from the other regions based on statistical properties. In solar flare prediction, it is modeled as a conditional density estimation (CDE) problem. A novel method is proposed to solve the CDE problem using kernel-based nonlinear regression and moment-based density function reconstruction techniques. This method involves two main steps. In the first step, kernel-based nonlinear regression techniques are applied to predict the conditional moments of the target variable, such as flare peak intensity or flare index. In the second step, the condition density function is reconstructed based on the estimated moments. The method is compared with the traditional double-kernel density estimator, and the experimental results show that it yields the comparable performance of the double-kernel density estimator. The most important merit of this new method is that it can handle high dimensional data effectively, while the double-kernel density estimator has confined to the bivariate case due to the difficulty of determining optimal bandwidths. The method can be used to predict the conditional density function of either flare peak intensity or flare index, which shows that our method is of practical significance in automated flare forecasting. SOLAR ACTIVITY DETECTION AND PREDICTION USING IMAGE PROCESSING AND MACHINE LEARNING TECHNIQUES
منابع مشابه
Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل